Pubs

Book chapter:

  1. J. Bray, J. K. Clegg, L. F. Lindoy, D. Schilter, “Self-assembled metallo-supramolecular systems incorporating β-diketone motifs as structural elements”, Adv. Inorg. Chem. 2007, 59, 1–37 (https://doi.org/10.1016/S0898-8838(06)59001-4).

Journal articles:

  1. J. K. Clegg, L. F. Lindoy, J. C. McMurtrie, D. Schilter, “Dinuclear bis-β-diketonato ligand derivatives of iron(III) and copper(II) and use of the latter as components for the assembly of extended metallo-supramolecular structures”, Dalton Trans. 2005, 857–864 (https://doi.org/10.1039/B418870E).
  2. D. J. Bray, J. K. Clegg, L.-L. Liao, L. F. Lindoy, J. C. McMurtrie, D. Schilter, G. Wei, T.-J. Won, “(Ethane-1,2-diamine)dinitratopalladium(II)”, Acta Cryst. 2005, E61, m1940–m1942 (https://doi.org/10.1107/S1600536805027224).
  3. J. K. Clegg, L. F. Lindoy, J. C. McMurtrie, D. Schilter, “Extended three-dimensional supramolecular architectures derived from trinuclear (bis-β-diketonato)copper(ii) metallocycles”, Dalton Trans. 2006, 3114–3121 (https://doi.org/10.1039/B517274H).
  4. J. K. Clegg, K. Gloe, M. J. Hayter, O. Kataeva, L. F. Lindoy, B. Moubaraki, J. C. McMurtrie, K. S. Murray, D. Schilter, “New discrete and polymeric supramolecular architectures derived from dinuclear (bis-β-diketonato)copper(II) metallocycles”, Dalton Trans. 2006, 3977–3984 (https://doi.org/10.1039/B606523F).
  5. L. F. Lindoy, J. C. McMurtrie, D. Schilter, “[4-(Dimethylamino)pyridine-кN]bis(pentane-2,4-dionato-к2O,O)copper(II)”, Acta Cryst. 2006, E62, m1142–m1143 (https://doi.org/10.1107/S1600536806014528).
  6. D. Schilter, J. K. Clegg, M. M. Harding, L. M. Rendina, “Platinum(II) and palladium(II) metallomacrocycles derived from cationic 4,4-bipyridinium, 3-aminopyrazinium and 2-aminopyrimidinium ligands”, Dalton Trans. 2010, 239–247 (https://doi.org/10.1039/b916579g).
  7. D. Schilter, T. Urathamakul, J. L. Beck, M. M. Harding, L. Rendina, “ESI-MS and thermal melting studies of nanoscale platinum(II) metallomacrocycles with DNA”, Dalton Trans. 2010, 11263–11271 (https://doi.org/10.1039/c0dt00754d).
  8. D. Schilter, M. J. Nilges, M. Chakrabarti, P. A. Lindahl, T. B. Rauchfuss, M. Stein, “Mixed-Valence Nickel–Iron Dithiolate Models of the [NiFe]-Hydrogenase Active Site”, Inorg. Chem. 2012, 51, 2238–2248 (https://doi.org/10.1021/ic202329y).
  9. D. Schilter, T. B. Rauchfuss, M. Stein, “Connecting [NiFe]-and [FeFe]-Hydrogenase: Mixed-Valence Nickel–Iron Dithiolates with Rotated Structures”, Inorg. Chem. 2012, 51, 8931–8941 (https://doi.org/10.1021/ic300910r).
  10. D. Schilter, T. B. Rauchfuss, “Nickel–iron dithiolates related to the deactivated [NiFe]-Hydrogenases”, Dalton Trans. 2012, 41, 13324–13329 (https://doi.org/10.1039/C2DT31895D).
  11. D. Schilter, T. B. Rauchfuss, “And the Winner is…Azadithiolate: an Amine Proton Relay in the [FeFe] Hydrogenases”, Angew. Chem. Int. Ed. 2013, 52, 13518–13520 (https://doi.org/10.1002/anie.201307132).
  12. M. E. Carroll, J. Chen, D. E. Gray, J. C. Lansing, T. B. Rauchfuss, D. Schilter, P. Volkers, S. R. Wilson, “Ferrous Carbonyl Dithiolates as Precursors to FeFe, FeCo and FeMn Carbonyl Dithiolates”, Organometallics 2014, 33, 858–867 (https://doi.org/10.1021/om400752a).
  13. C. M. Tse, D. Schilter, D. L. Gray, T. B. Rauchfuss, A. A. Gewirth, “Multicopper Models for the Laccase Active Site: Effect of Nuclearity on Electrocatalytic Oxygen Reduction”, Inorg. Chem. 2014, 53, 8505–8516 (https://doi.org/10.1021/ic501080c).
  14. T. Huynh, D. Schilter, S. Hammes-Schiffer, T. B. Rauchfuss, “Protonation of Nickel–Iron Hydrogenase Models Proceeds After Isomerization at Nickel”, J. Am. Chem. Soc. 2014, 136, 12385–12395 (https://doi.org/10.1021/ja505783z).
  15. D. Schilter, V. Pelmenschikov, H. Wang, F. Meier, L. B. Gee, Y. Yoda, M. Kaupp, T. B. Rauchfuss, S. P. Cramer, “Synthesis and Vibrational Spectroscopy of 57Fe-Labeled Models of [NiFe] Hydrogenase: First Direct Observation of a Nickel–Iron Interaction”, Chem. Commun. 2014, 50, 13469–13472 (https://doi.org/10.1039/C4CC04572F).
  16. D. Schilter, “Nickel-iron hydrogenases: high-resolution crystallography resolves the hydride, but not the debate”, ChemBioChem 2015, 16, 1712–1714 (https://doi.org/10.1002/cbic.201500270).
  17. R. Angamuthu, C.-S. Chen, T. R. Cochrane, D. L. Gray, D. Schilter, O. A. Ulloa, T. B. Rauchfuss, “N-Substituted Derivatives of the Azadithiolate Cofactor from the [FeFe]-Hydrogenases: Stability and Complexation”, Inorg. Chem. 2015, 54, 5717–5724 (https://doi.org/10.1021/acs.inorgchem.5b00290).
  18. H. Ogata, T. Krämer, H. Wang, D. Schilter, Vladimir Pelmenschikov, M. van Gastel, F. Neese, T. B. Rauchfuss, L. B. Gee, A. D. Scott, Y. Yoda, Y. Tanaka, W. Lubitz, S. P. Cramer, “Hydride bridge in [NiFe]-hydrogenase observed by nuclear resonance vibrational spectroscopy”, Nat. Commun. 2015, 6, 7890 (https://doi.org/10.1038/ncomms8890).
  19. D. Schilter, A. L. Fuller, D. L. Gray, “Nickel–molybdenum and nickel–tungsten dithiolates: hybrid models for hydrogenases and hydrodesulfurization”, Eur. J. Inorg. Chem. 2015, 4638–4642 (https://doi.org/10.1002/ejic.201500740).
  20. D. Schilter, J. M. Camara, M. T. Huynh, S. Hammes-Schiffer, T. B. Rauchfuss, “Hydrogenase Enzymes and Their Synthetic Models: The Role of Metal Hydrides”, Chem. Rev. 2016, 116, 8693–8749 (https://doi.org/10.1021/acs.chemrev.6b00180).
  21. P. Moerdyk, D. Schilter, C. W. Bielawski, “N,N’-Diamidocarbenes: Isolable Divalent Carbons with Bona Fide Carbene Reactivity”, Acc. Chem. Res. 2016, 49, 1458–1468 (https://doi.org/10.1021/acs.accounts.6b00080).
  22. X. Zhang, Y. Huang, S. Chen, N. Y. Kim, W. Kim, D. Schilter, M. Biswal, B. Li, Z. Lee, S. Ryu, C. W. Bielawski, W. S. Bacsa, R. S. Ruoff, “Birch-type hydrogenation of few-layer graphenes: products and mechanistic implications”, J. Am. Chem. Soc. 2016,138, 14980–14986 (https://doi.org/10.1021/jacs.6b08625).
  23. D. Schilter, C. W. Bielawski, “Synthesis of a 2,2-Dichloroimidazolidine-4,5-dione and its Application in Chlorodehydroxylation”, Org. Synth. 2016, 93, 413–421 (https://doi.org/10.15227/orgsyn.093.0413).
  24. D. Schilter, D. L. Gray, A. L. Fuller, T. B. Rauchfuss, “Nickel-iron hydrogenase active site models with redox-active ligands”, Aust. J. Chem. 2017, 70, 505–515 (https://doi.org/10.1071/CH16614).
  25. M. Biswal, X. Zhang, D. Schilter, T. K. Lee, D. Y. Hwang, M. Saxena, S. H. Lee, S. Chen, S. K. Kwak, C. W. Bielawski, W. S. Bacsa, R. S. Ruoff, “Sodide and Organic Halides Effect Covalent Functionalization of Single and Bilayer Graphene”, J. Am. Chem. Soc. 2017, 139, 4202–4210 (https://doi.org/10.1021/jacs.7b00932).
  26. D. Schilter, T. B. Rauchfuss, “A Nickel–Iron Thiolate and its Hydride”, Inorg. Synth. 2018, 37, 166–170 (https://doi.org/10.1002/9781119477822.ch8; ISBN: 978-1-119-47773-0).
  27. Y. Aoki et al. “Physical methods for mechanistic understanding: general discussion” Faraday Discuss. 2019, 220, 144–178 (https://doi.org/10.1039/C9FD90070E).

Research Highlights:

  1. D. Schilter, “A new mesoporous conductor”, Nat. Rev. Mater. 2016, 1, 16079 (https://doi.org/10.1038/natrevmats.2016.79).
  2. D. Schilter, “Hierarchical nanostructures: Nanoshells show their metal”, Nat. Rev. Mater. 2016, 1, 16096 (https://doi.org/10.1038/natrevmats.2016.96).
  3. D. Schilter, “Translation: The proof is in the protein”, Nat. Rev. Chem. 2017, 1, 0011 (https://doi.org/10.1038/s41570-016-0011).
  4. D. Schilter, “Thiol oxidation: A slippery slope”, Nat. Rev. Chem. 2017, 1, 0013 (https://doi.org/10.1038/s41570-016-0013).
  5. D. Schilter, “Hydrogen storage: A reformed approach”, Nat. Rev. Chem. 2017, 1, 0027 (https://doi.org/10.1038/s41570-017-0027).
  6. D. Schilter, “Organometallic chemistry: High-valent iron gets homoleptic”, Nat. Rev. Chem. 2017, 1, 0036 (https://doi.org/10.1038/s41570-017-0036).
  7. D. Schilter, “OLEDs: rotation propels crossing”, Nat. Rev. Chem. 2017, 1, 0040 (https://doi.org/10.1038/s41570-017-0040).
  8. D. Schilter, “CO capture: IL’s a trap!”, Nat. Rev. Chem. 2017, 1, 0047 (https://doi.org/10.1038/s41570-017-0047).
  9. D. Schilter, “Oxidation Reactions: A chameleon catalyst”, Nat. Rev. Chem. 2017, 1, 0050 (https://doi.org/10.1038/s41570-017-0050).
  10. D. Schilter, “Alkane dehydrogenation: Alkanes ylide-vised to go near titanium”, Nat. Rev. Chem. 2017, 1, 0058 (https://doi.org/10.1038/s41570-017-0058).
  11. D. Schilter, “Total synthesis: Polyketides as easy as ABC (and D)”, Nat. Rev. Chem. 2017, 1, 0073 (https://doi.org/10.1038/s41570-017-0073).
  12. D. Schilter, “Metalloenzymes: Fast delivery delivers mechanism”, Nat. Rev. Chem. 2017, 1, 0081 (https://doi.org/10.1038/s41570-017-0081).
  13. D. Schilter, “Fluorescence: Isolated rings do big things”, Nat. Rev. Chem. 2017, 1, 0097 (https://doi.org/10.1038/s41570-017-0097).
  14. D. Schilter, “Photoluminescence: Nanocrystals play hot potato”, Nat. Rev. Chem. 2018, 2, 0107 (https://doi.org/10.1038/s41570-017-0107).
  15. D. Schilter, “Electrocatalysis: Volcano spews out hot new catalyst”, Nat. Rev. Chem. 2018, 2, 0116 (https://doi.org/10.1038/s41570-018-0116).
  16. D. Schilter, “Environmental chemistry: Phenol oxidation causes complications”, Nat. Rev. Chem. 2018, 2, 0129 (https://doi.org/10.1038/s41570-018-0129).
  17. D. Schilter, “Homogeneous catalysis: Faster formation of fuels and fertilizers”, Nat. Rev. Chem. 2018, 2, 0131 (https://doi.org/10.1038/s41570-018-0131).
  18. D. Schilter, “Heterogeneous catalysis: Metastable multipods”, Nat. Rev. Chem. 2018, 2, 0144 (https://doi.org/10.1038/s41570-018-0144).
  19. D. Schilter, “Biocatalysis: Electrons hop between the animate and the inanimate”, Nat. Rev. Chem. 2018, 2, 0145 (https://doi.org/10.1038/s41570-018-0145).
  20. D. Schilter, “Homogeneous catalysis: Synthetic models close in on enzymes”, Nat. Rev. Chem. 2018, 2, 0147 (https://doi.org/10.1038/s41570-018-0147).
  21. D. Schilter, “Electrocatalysis: The search for selectivity”, Nat. Rev. Chem. 2018, 2, 2 (https://doi.org/10.1038/s41570-018-0004-z).
  22. D. Schilter, “Catalytic hydrogenation: An old reagent becomes a new precatalyst”, Nat. Rev. Chem. 2018, 2, 49 (https://doi.org/10.1038/s41570-018-0011-0).
  23. D. Schilter, “Surface chemistry: Ions surf across salt surface”, Nat. Rev. Chem. 2018, 2, 97 (https://doi.org/10.1038/s41570-018-0014-x).
  24. D. Schilter, “Superatoms: Open shells open doors”, Nat. Rev. Chem. 2018, 2, 147 (https://doi.org/10.1038/s41570-018-0026-6).
  25. D. Schilter, “Main-group chemistry: Frustration leads to radical behaviour”, Nat. Rev. Chem. 2018, 2, 255 (https://doi.org/10.1038/s41570-018-0047-1).
  26. D. Schilter, “Mechanochemistry: Feel the force”, Nat. Rev. Chem. 2018, 2, 331 (https://doi.org/10.1038/s41570-018-0056-0).
  27. D. Schilter, “Geochemistry: Extraterrestrial electrochemistry”, Nat. Rev. Chem. 2018, 2, 395 (https://doi.org/10.1038/s41570-018-0061-3).
  28. D. Schilter, “Main-group chemistry: I will bond IF hard pressed”, Nat. Rev. Chem. 2019, 3, 65 (https://doi.org/10.1038/s41570-019-0072-8).
  29. D. Schilter, “Metalloproteins: Finding the right match”, Nat. Rev. Chem. 2019, 3, 130 (https://doi.org/10.1038/s41570-019-0083-5).
  30. D. Schilter, “Metalloenzymes: Thiolate gates superoxo states”, Nat. Rev. Chem. 2019, 3, 203 (https://doi.org/10.1038/s41570-019-0083-5).
  31. D. Schilter, “Fullerenes: It’s hip to be heptagonal”, Nat. Rev. Chem. 2019, 3, 287 (https://doi.org/10.1038/s41570-019-0093-3).
  32. D. Schilter, “Protein structure: Unfolding in front of our eyes”, Nat. Rev. Chem. 2019, 3, 343 (https://doi.org/10.1038/s41570-019-0105-3).
  33. D. Schilter, “Transition metal catalysis: Nothing gets between Me and nitrogen”, Nat. Rev. Chem. 2019, 3, 402 (https://doi.org/10.1038/s41570-019-0114-2).
  34. D. Schilter, “Biofuels: Palms make way for oleaginous yeast”, Nat. Rev. Chem. 2019, 3, 464 (https://doi.org/10.1038/s41570-019-0118-y).
  35. D. Schilter, “Metal clusters: MAD from the scatter”, Nat. Rev. Chem. 2019, 3, 511 (https://doi.org/10.1038/s41570-019-0127-x).
  36. D. Schilter, “Metal clusters: Gold called to action”, Nat. Rev. Chem. 2019, 3, 512 (https://doi.org/10.1038/s41570-019-0130-2).
  37. D. Schilter, “Structure and bonding: A new kind of magic”, Nat. Rev. Chem. 2019, 3, 565 (https://doi.org/10.1038/s41570-019-0134-y).
  38. D. Schilter, “Electrocatalysis: Oxygen caught on film”, Nat. Rev. Chem. 2019, 3, 621 (https://doi.org/0.1038/s41570-019-0141-z).
  39. D. Schilter, “Main-group chemistry: Cationic congeners captured”, Nat. Rev. Chem. 2019, 3, 670 (https://doi.org/10.1038/s41570-019-0145-8).
  40. D. Schilter, “Fluxional molecules: Trading places”, Nat. Rev. Chem. 2020, 4, 2 (https://doi.org/10.1038/s41570-019-0154-7).
  41. D. Schilter, “Electrocatalysis: A fifth copper’s in town”, Nat. Rev. Chem. 2019, 3, 113 (https://doi.org/10.1038/s41570-020-0169-0).
  42. D. Schilter, “Homogeneous catalysis: Nickel don’t care about no air”, Nat. Rev. Chem. 2020, 4, 171 (https://doi.org/10.1038/s41570-020-0177-0).
  43. D. Schilter, “Chemical sensing: Wacker mole of ethylene”, Nat. Rev. Chem. 2020, 4, 226 (https://doi.org/10.1038/s41570-020-0181-4).
  44. D. Schilter, “Main-group chemistry: Carbonyl trapped in silico”, Nat. Rev. Chem. 2020, 4, 274 (https://doi.org/10.1038/s41570-020-0190-3).
  45. D. Schilter, “Polymer chemistry: Dial your dispersity”, Nat. Rev. Chem. 2020, 4, 331 (https://doi.org/10.1038/s41570-020-0198-8).
  46. D. Schilter, “Biogeochemistry: Balancing the hydrogen books”, Nat. Rev. Chem. 2020, 4, 383 (https://doi.org/10.1038/s41570-020-0206-z).
  47. D. Schilter, “Structure and bonding: Bonding electrons happy with single life”, Nat. Rev. Chem. 2020, 4, 438 (https://doi.org/10.1038/s41570-020-0212-1).
  48. D. Schilter, “Molecular switches: pHotoacids jump further”, Nat. Rev. Chem. 2020, 4, 505 (https://doi.org/10.1038/s41570-020-0219-7).
  49. D. Schilter, “Structure and bonding: Taking metal–metal interactions for a spin”, Nat. Rev. Chem. 2020, 4, 565 (https://doi.org/10.1038/s41570-020-00227-4).
  50. D. Schilter, “Structure and bonding: Group 14 atoms — plane and simple”, Nat. Rev. Chem. 2020, 4, 637 (https://doi.org/10.1038/s41570-020-00234-5).
  51. D. Schilter, “Electrocatalysis: Stark contrast in selectivity”, Nat. Rev. Chem. 2021, 5, 1 (https://doi.org/10.1038/s41570-020-00240-7).
  52. D. Schilter, “Phytochemistry: Labelled lignin leaks its secrets”, Nat. Rev. Chem. 2021, 5, 74 (https://doi.org/10.1038/s41570-021-00250-z).
  53. D. Schilter, “Gas-phase chemistry: Volatile molecule chooses to cooperate”, Nat. Rev. Chem. 2021, 5, 143 (https://doi.org/10.1038/s41570-021-00257-6).
  54. D. Schilter, “Organometallic chemistry: Phosphine wins Au after double elimination”, Nat. Rev. Chem. 2021, 5, 367 (https://doi.org/10.1038/s41570-021-00287-0).
  55. D. Schilter, “Homogeneous catalysis: Doing without diazos”, Nat. Catal. 2021, 4, 347 (https://doi.org/10.1038/s41929-021-00628-8).
  56. D. Schilter, “Coordination chemistry: Discretion is the better part of valence”, Nat. Rev. Chem. 2021, 5, 445 (https://doi.org/10.1038/s41570-021-00301-5).
  57. D. Schilter, “Main-group chemistry: Nickel doesn’t get a slice of the pi”, Nat. Rev. Chem. 2021, 5, 446 (https://doi.org/10.1038/s41570-021-00307-z).
  58. D. Schilter, “Halogen bonding: Scalar coupling scales with bonding”, Nat. Rev. Chem. 2021, 5, 598 (https://doi.org/10.1038/s41570-021-00320-2).

Editorials:

  1. D. Schilter, “Chemistry recrystallized”, Nat. Rev. Chem. 2017, 1, 007 (https://doi.org/10.1038/s41570-016-0007).
  2. D. Schilter, “Read, copy, edit and repeat”, Nat. Rev. Chem. 2017, 1, 075 (https://doi.org/10.1038/s41570-017-0075).
  3. D. Schilter, “Electrocatalysis for the generation and consumption of fuels”, Nat. Rev. Chem. 2018, 2, 0125 (https://doi.org/10.1038/s41570-018-0125).
  4. D. Schilter, “Anything you can do…”, Nat. Rev. Chem. 2018, 2, 195–196 (https://doi.org/10.1038/s41570-018-0038-2).
  5. D. Schilter, “A unique critique”, Nat. Rev. Chem. 2019, 3, 563 (https://doi.org/10.1038/s41570-019-0135-x).
  6. D. Schilter, “Piecing together a structural puzzle”, Nat. Rev. Chem. 2020, 4, 223–224 (https://doi.org/10.1038/s41570-020-0175-2).